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ABSTRACT 
With the advent of fast computer systems, scientists are now able 
to generate terabytes of simulation data.  Unfortunately, the sheer 
size of these data sets has made efficient exploration of them 
impossible.  To aid scientists in gleaning insight from their 
simulation data, we have developed an ad-hoc query 
infrastructure.  Our system, called AQSim (short for Ad-hoc 
Queries for Simulation) reduces the data storage requirements and 
query access times in two stages. First, it creates and stores 
mathematical and statistical models of the data at multiple 
resolutions.  Second, it evaluates queries on the models of the data 
instead of on the entire data set.  In this paper, we present two 
simple but effective statistical modeling techniques for simulation 
data.  Our first modeling technique computes the “true” 
(unbiased) mean of systematic partitions of the data.  It makes no 
assumptions about the distribution of the data and uses a variant 
of the root mean square error to evaluate a model.  Our second 
statistical modeling technique uses the Andersen-Darling 
goodness-of-fit method on systematic partitions of the data.  This 
method evaluates a model by how well it passes the normality test 
on the data.  Both of our statistical models effectively answer 
range queries.  At each resolution of the data, we compute the 
precision of our answer to the user’s query by scaling the one-
sided Chebyshev Inequalities with the original mesh’s topology.  
We combine precisions at different resolutions by calculating their 
weighted average.  Our experimental evaluations on two scientific 
simulation data sets illustrate the value of using these statistical 
modeling techniques on multiple resolutions of large simulation 
data sets. 

Categories and Subject Descriptors 
E.4 [Data]: Coding and Information Theory – data compaction 
and compression.  G.3 [Mathematics of Computing]: Probability 
and Statistics – distribution functions, multivariate statistics, 
nonparametric statistics, statistical computing.  H.2.4 [Database 
Management]: Systems – query processing.  H.2.8 [Database 
Management]: Database Applications – data mining, scientific 
databases.  H.3.1 [Information Storage and Retrieval]: Content 

Analysis and Indexing – indexing methods. 

General Terms 
Algorithms, Management, Measurement, Performance, 
Experimentation. 

Keywords 
statistical modeling, large-scale scientific data sets, approximate 
ad-hoc queries. 

1. INTRODUCTION 
By utilizing the enormous computing power currently available, 
scientific experiments are producing tera-scale simulation data.  
The size of these data sets makes even the best available 
visualization tools inadequate.  The need to efficiently explore 
these large simulation data sets has led to a surge of interest in 
scalable modeling and visualization tools [1][2][3][4][7][10]. 

To help explore these huge data sets, we have created AQSim 
(short for Ad-hoc Queries for Simulation).  AQSim utilizes multi-
resolution models to reduce both the data storage requirements 
and the query response times.  Figure 1 illustrates an overview of 
AQSim’s data flow.  AQSim has two components: (i) the model 
generator and (ii) the query processor.  The model generator 
builds statistical and mathematical models of systematic partitions 
of the data.  By generating models in this manner, we create 
models at different resolutions of the data.  Moreover, since 
models take less storage space than the original data set,1 we are 
able to keep the models on secondary storage.  Subsequently, the 
query processor executes queries on these models to regenerate 
the appropriate subset of data.  This processor decreases the query 
response time since models of the data are queried. 

AQSim’s model generator builds models from mesh data, which is 
produced by most scientific simulation code.  A mesh data set 
consists of interconnected grids of small zones, in which data 
points are stored.  Figure 2 depicts the mesh produced from an 
astrophysics simulation of a star in its mid-life.  Mesh data usually 
varies with time, consists of multiple dimensions (i.e., variables), 
and can contain irregular grids.  Musick and Critchlow provide a 
nice introduction to scientific mesh data [8].   

                                                                 
1 The original data set typically resides on tertiary storage. 
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In this paper, we describe and evaluate two statistical modeling 
techniques for AQSim.  The first model captures the “true” 
(unbiased) mean of systematic partitions of the data.  We call this 
model the mean modeler.  The mean modeler has two main 
advantages.  First, it makes no assumptions about the distribution 
of the data.  Second, it calculates its model parameters through 
one sweep of the data at each resolution.2  The error metric on the 
mean modeler is a variant of the root mean square error (RMSE).  
Our second model captures the normality of systematic partitions 
of the data by utilizing the Anderson-Darling goodness-of-fit test 
[5].  This model is called the goodness-of-fit modeler.  Similar to 
the mean modeler, the goodness-of-fit modeler is able to calculate 
its model parameters through one sweep of the data.  However, 
this modeler attempts to fit the data to a normal distribution.  The 
error on this model is the Type I error associated with the 
goodness-of-fit test.  Section 2 describes these two approaches in 
details. 

Despite their simplicity, these models have performed extremely 
well on our empirical studies of range queries (see Section 4).  
The answer to a query is judged by its weighted average precision 
to the original data. At each partition, we calculate the precision 
associated with a query’ s answer by scaling the one-sided 
Chebyshev inequality with a metric representing the topology of 
the original mesh in that partition [6].  We chose to utilize the 
one-sided Chebyshev inequality since it does not make any 
assumptions about the data.  Section 3 describes AQSim’ s query 
processor and our precision measure in details. 

Section 4 presents two case-studies, which illustrate the value of 
our approach.  Sections 5 and 6 discuss some related and future 
work, respectively.  Section 7 summarizes our work. 
 

                                                                 
2 The terms resolution and partition are interchangeable in this 

paper. 

 

Figure 2. A Mesh Data Set Representing a Star 

2. AQSIM’S MODEL GENERATOR 
AQSim’ s model generator systematically partitions the original 
data and builds models on each partition.  Partitioning stops when 
models are accurate within a user-defined error threshold. 

AQSim has two different partitioning strategies:  (i) top-down and 
(ii) bottom-up.  Due to limitation in space, we will only discuss 
the first strategy in this paper.  In the top-down approach, the data 
is divided in a four-way bisection on the spatial-temporal space 
(see Figure 3).  The computational complexity of this partitioning 
approach is O(Ndata × Nlevel), where Ndata is the size of the original 
data set and Nlevel is the number of partitioning levels.  For 
example, in Figure 3, the number of partitioning levels is 2. 

 
The remainder of this section describes AQSim’ s two statistical 
modeling techniques. 

2.1 Mean Modeler 
Each partition, pk, of the data has a set of variables associated with 
it.  For each variable vi, the mean modeler is µ i, where µ i is the 
mean of the data points associated with vi in partition pk. 

For the mean modeler, partitioning of the data stops when either 
one of the following two conditions is true: 

Figure 3. Top-Down Partitioning of the 
Data at a Particular Time Step 
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1. ∀v∈NonPartitioningVariables in node η�� v = 0. 
2. ∀v∈NonPartitioningVariables in node η,  

� v – c. v ��PLQv) & (maxv �� v + c. v). 

The first stopping criterion represents the simple case of partitions 
with either 1 data point or a set of data points with standard 
deviation of zero.  In the second stopping criterion, the partition 
threshold, c, is a real number greater than or equal to zero.  This 
user-defined threshold is a scaling factor for the standard 
deviation of variable v.  For example, c = 1 means that the 
minimum and maximum values for each non-partitioning variable 
must be within 1 standard deviation of the mean of the data points 
in the node.  The advantage of the above stopping criteria is that it 
does not assume any distribution on the data points. 

For the mean modeler, standard deviation is the same as RMSE 
(root mean square error) since the true mean, which is an 
unbiased estimator, is used as the model.  Thus, the RMSE is the 
error metric associated with the mean modeler. 

2.2 Goodness-of-Fit Modeler 
For each variable vi in partition pk, the goodness-of-fit modeler is 
N(µ i, σ i).  That is, the model for vi is a normal distribution with 
mean, µ i, and standard deviation, σ i.  

For the goodness-of-fit modeler, the partitioning step stops when 
the hypothesis test for normality is not rejected.  We use the 
Anderson-Darling test for normality (which is considered to be 
the most powerful goodness-of-fit test for normality) for our 
goodness-of-fit test [5]. 

The Anderson-Darling test involves calculating the A2 metric for 
variable vi ~ N(µ i, σ i), which is defined to be  
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associated with the user-specified error threshold [5].  Otherwise, 
we accept H0. 

For each variable vi, the error on this model is defined to be 
Pr(reject H0 | H0 is true), where H0 is the null hypothesis.  H0 
states that the distribution of a variable vi is normal.  In other 
words, the model error is equal to the Type I error. 

3. AQSIM’s QUERY PROCESSOR 
AQSim’ s query processor takes a user’ s query and the amount of 
time that the user is willing to wait for an answer.  Then, while its 
running time is less than the user-defined time limit, the query 
processor searches the hierarchical partitions (which were made 
by the model generator) for those partitions that contain highly 
precise models for the given query. 

Precision(Q, modelj, partitioni) is defined to be the precision of 
the answer that modelj of partitioni would produce for the query, 

Q, as a percentage of partitioni‘s mesh topology.3  Specifically, 
Precision(Q, modelj, partitioni) = Filled_Volume(partitioni) × 
P(Q, modelj, partitioni), where Filled_Volume returns the 
percentage of non-empty space in the given partition’s spatial 
bounding box and is defined to be 
Filled_Volume(parent_partition) = 
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where Filled_Volume(leaf_partition) = 1.  

P(Q, modelj, partitioni) is calculated by using the one-sided 
Chebyshev inequalities [6], which are defined to be 
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X is a random variable with mean  and variance 2.  The variable 
 is a real number.  The advantage of using the Chebyshev 

inequalities is that no assumption is made on the distribution of 
the data in a partition.  For example, suppose we are given the 
query, pressure ���.5.  Then, for any partition, p (and �= pressure 
– 0.5), the precision is equal to  

Precision(pressure ��0.5, mean modeler, p) = 

Filled_Volume(p) × P(pressure ��0.5) = 

Filled_Volume(p) × P(pressure �� pressure – ) � 
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For more complicated queries, we make new random variables 
and calculate mean and standard deviation values for them based 
on the original means and standard deviations.  We assume 
independence between the original variables when calculating the 
means and standard deviations of the new random variables.  For 
example, suppose we are given the query, 
( ) densitypressureetemperatur ≤ .  This query is equivalent to 

( ) 0≤− densitypressureetemperatur .  We create a new random 

variable, R, where ( ) densitypressureetemperaturR −= .  So, 

our query is now R � 0.  By calculating R’ s mean and standard 
deviation, we can use the aforementioned formula, namely 
Precision(Q, modelj, partitioni) = Filled_Volume(partitioni) × 
P(Q, modelj, partitioni), to calculate our query’ s precision.  Mean 
of R, µR, is equal to E[( pressureetemperatur ) – density] = 

E[( pressureetemperatur )] – E[density] = 
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To get this formula, we assume that the random variables 
temperature and pressure are independent.  Moreover, we use the 
formula E[g(X)·h(Y)] = E[g(X)]·E[h(Y)], where X and Y are two 
                                                                 
3 The percentage of a partition’ s mesh topology corresponds to 

how well the partition’ s bounding box matches the underlying 
mesh topology. 



independent random variables.  The functions, g and h, are over X 
and Y, respectively.  Finally, we use a lemma from Ross [9], 
which states the following: 

“/HW�=�EH�D�UDQGRP�YDULDEOH�KDYLQJ�ILQLWH�H[SHFWDWLRQ� �DQG�
YDULDQFH� 2.  Let g(•) be a twice differentiable function.  
Then E[g(Z)] §�J� �����J � �
���
 2).”  

Similarly, we calculate the standard deviation for R, by using the 
equation E[R2] – (E[R])2 and assuming independence between 
temperature, pressure, and density.  Due to space limitations, we 
have omitted the formula for R’ s standard deviation. 

To get a single number representing the overall precision of our 
answer, we compute the weighted average of the precisions 
(which were calculated on all the explored partitions).  In 
particular, the weighted average of the precisions is defined to be  

( )
∑
=

∑
=

partitionsloredexpof

i
i

partitionsloredexpof

i
iij

pVolume

pVolumepmQecisionPr

   #

1

   #

1

)(

)(*) , ,(
, 

where mj
 is set to a particular model (e.g., the mean modeler). 

4. EXPERIMENTAL EVALUATION 
4.1 The Can Data Set 
Our first data set represents a wall crushing a can.  It has 14 
variables, 44 time steps, and 443,872 data points.  The variables 
associated with this data set are: time, x axis, y axis, z axis, 
pressure, acceleration along each axis, velocity along each axis, 
and displacement along each axis.  Figure 4 depicts this data set in 
its first time step when all the 440K points are plotted. 

 

Figure 4. The Can Data Set at its First Time Step 

Table 1 lists the compression results on the can data for the mean 
modeler.  Recall that the partition threshold for this modeler 
restricts the distance between minimum and maximum values of a 
variable and its mean value with respect to RMSE. 

For our mean modeler experiments, Figures 5 through 7 show the 
can data set at its first time step when the query time > 0 is posed 
with no constraint on the query processor’ s execution time and 
with partition thresholds of 1.00, 2.00, and 3.00, respectively.  As 
expected, we get better compression as the partition threshold for 
the mean modeler gets larger (since we are allowing the range of 
values for a variable to be larger).  However, as you see in Figure 

7 even with 82.6% compression, we are able to return a highly 
precise answer.  The weighted average of all the precisions is 
100% on the answer to the query, time > 0. 

Table 1. Mean Modeler’s Compression Results  
on the Can Data  

Partition 
Threshold 

% of 
Compression 

Total # of 
partitions 

% of non-
leaf 

partitions 

% of leaf 
partitions 

Avg. # of 
data point in 
a partition 

1.00 4.2 425,075 19.4 80.6 1.3 

1.50 33.0 297,566 13.4 86.6 1.7 

1.75 40.1 265,939 12.5 87.5 1.9 

2.00 51.5 215,255 11.1 88.9 2.3 

2.25 62.4 166,986 10.3 89.7 3.0 

2.50 71.6 125,912 9.6 90.4 3.9 

2.75 78.1 97,410 9.1 90.9 5.0 

3.00 82.6 77,277 8.6 91.4 6.3 

 
Figure 5. Can Data Set at its First Time Step with Partition 

Threshold = 1.00, Query = Time > 0 

 
Figure 6. Can Data Set at its First Time Step with Partition 

Threshold = 2.00, Query = Time > 0 

Table 2 lists the compression results on the can data for the 
goodness-of-fit modeler.  The partition threshold in this table 
represents the confidence region of our normality test, which is 
equal to 100 × (1 – Type I error). 

 



 

Figure 7. Can Data Set at its First Time Step with Partition 
Threshold = 3.00, Query = Time > 0 

Table 2. Goodness-of-Fit Modeler’s Compression Results  
on the Can Data 

% Partition 
Threshold 

% of 
Compression 

Total # of 
partitions 

% of non-
leaf 

partitions 

% of leaf 
partitions 

Avg. # of 
data point in 
a partition 

50.0 39.6 272,583 12.6 87.4 1.9 

80.0 57.3 189,533 10.1 89.9 2.6 

85 60.9 173,766 9.7 90.3 2.8 

90.0 65.8 151,818 9.3 90.7 3.2 

95.0 73.7 116,948 8.8 91.2 4.2 

99.99 91.4 38,344 7.3 92.7 12.5 

For our goodness-of-fit modeler experiments, Figures 8 through 
10 show the can data set at its first time step when the query time 
> 0 is posed with no constraint on execution time and with 
partition thresholds of 50%, 95%, and 99.99% respectively.  
Again not surprisingly, we get better compression as the partition 
threshold for the goodness-of-fit modeler gets larger (since the 
confidence region shrinks).  However, as you see in Figure 10 
even with 91.4% compression, we are able to return a highly 
precise answer.  The weighted average of all the precisions is 
100% on the answer to the query, time > 0. 

 
Figure 8. Can Data Set at its First Time Step with Partition 

Threshold = 50%, Query = Time > 0 

 
Figure 9. Can Data Set at its First Time Step with Partition 

Threshold = 95%, Query = Time > 0 

 

Figure 10. Can Data Set at its First Time Step with Partition 
Threshold = 99.99%, Query = Time > 0 

The mean modeler achieves approximately 40% compression 
when the partition threshold is 1.75 (see Table 1).  The goodness-
of-fit modeler produces nearly the same level of compression with 
a partition threshold of 50% (see Table 2).  Figures 8 and 11 
illustrate the query processor’ s results on the query time > 0, for 
models built by the goodness-of-fit modeler (with threshold = 
50%) and the mean modeler (with threshold = 1.75), respectively. 

 
Figure 11. Can Data Set at its First Time Step with Partition 

Threshold = 1.75, Query = Time > 0 



4.2 The Astrophysics Data Set 
Our second data set represents a star in its mid-life.  It has 18 
variables, 16 time steps, and 1,708,852 zones.  The variables 
associated with this data set are: time, x axis, y axis, z axis, 
distance, grid vertex values, grid movement along the x and y 
axes, d(energy)/d(temperature), density, electron temperature, 
temperature due to radiation, pressure, artificial viscosity, material 
temperature, material velocity along the x, y, and z axes. Figure 12 
depicts this data set in its first time step when all the 1.7 million 
points are plotted. 

Table 3 lists the compression results on the astrophysics data for 
the mean modeler.  Again, recall that the partition threshold for 
this modeler restricts the distance between minimum and 
maximum of a variable and its mean value with respect to RMSE. 

For our mean modeler experiments, Figure 13 shows the 
astrophysics data set at its first time step when the query time > 0 
is posed with no constraint on execution time and with partition 
thresholds of 3.00.  Similar to our experiments on the can data set, 
we get better compression as the partition threshold for the mean 
modeler gets larger (since we are allowing the range of values for 
a variable to be larger).  However, as you see even with 92.1% 
compression, we are able to return a highly precise answer.  The 
weighted average of all the precisions is 100% on the answer to 
the query, time > 0. 

 
Figure 12. Astrophysics Data Set at its First Time Step 

Table 3. Mean Modelers’ Compression Results 
 on the Astrophysics Data  

Partition 
Threshold 

% of 
Compression 

Total # of 
partitions 

% of non-
leaf 

partitions 

% of leaf 
partitions 

Avg. # of 
data point in 
a partition 

1.75 67.4 728,081 17.9 82.1 2.9 

2.00 70.1 511,395 17.8 82.2 4.1 

2.25 79.7 347,471 17.7 82.3 6.0 

2.50 85.8 242,840 18.7 81.3 8.7 

2.75 89.6 177,448 19.0 81.0 11.9 

3.00 92.1 135,548 17.8 82.2 15.3 

Table 4 lists the compression results on the can data for the 
goodness-of-fit modeler.  Recall that the partition threshold in this 
table represents the confidence region of our normality test, which 
is equal to 100 × (1 – Type I error). 

 

Figure 13. Astrophysics Data Set at its First Time Step with 
Partition Threshold of 3.00, Query Time > 0 

Table 4. Goodness-of-Fit Modeler’s Compression Results  
on the Astrophysics Data 

% Partition 
Threshold 

% of 
Compression 

Total # of 
partitions 

% of non-
leaf 

partitions 

% of leaf 
partitions 

Avg. # of 
data point in 
a partition 

80.0 66.7 564,718 16.8 83.2 3.6 

85 71.2 492,029 16.7 83.3 4.2 

90.0 76.4 404,136 16.9 83.1 5.1 

95.0 82.8 293,585 16.8 83.2 7.0 

99.99 94.3 97,819 13.3 86.7 20.2 

For our goodness-of-fit modeler experiments, Figure 14 shows the 
astrophysics data set at its first time step when the query time > 0 
is posed with no constraint on execution time and with partition 
thresholds of 99.99%.  Again not surprisingly, we get better 
compression as the partition threshold for the goodness-of-fit 
modeler gets larger (since the confidence region shrinks).  
However, as you see in Figure 14 even with 94.3% compression, 
we are able to return a highly precise answer.  The weighted 
average of all the precisions is 100% on the answer to the query, 
time > 0. 

 

Figure 14. Astrophysics Data Set at its First Time Step with 
Partition Threshold of 99.99%, Query Time > 0 



4.3 Discussion 
Our experimental results illustrate the value of using simple 
statistical modeling techniques on scientific simulation data sets.  
Both of our approaches require only one sweep of the data and 
generate models that compress the data up to 94%. 

The goodness-of-fit modeler performed better than the mean 
modeler on the two data sets presented in this paper.  This is not 
surprising to us since our two data sets describe physical 
phenomena and the goodness-of-fit modeler is biased towards 
such normally distributed data sets.  In general, we prefer the 
mean modeler since it makes no assumption on the data. 

5. RELATED WORK 
Our work is similar to Freitag and Loy’ s work at Argonne 
National Laboratory [7].  Their system builds distributed octrees 
from large scientific data sets.  They, however, reduce their data 
by constraining the points to their spatial locations.  They also do 
not allow the user to query the octree.  Instead, the user can view 
the tree at different resolutions.  

STING [10] is also similar to AQSim except that it assumes that 
the distribution of the data is known.  It has been tested only on 
small data sets containing only tens of thousands of data points. 

AQUA [2] uses cached summary data in an OLAP domain.  
Unfortunately, they use sampling and histogram techniques, 
which can remove outliers from data sets.  In our experiences, 
outliers are very important to scientists.  Moreover, histograms are 
computationally expensive on high-dimensional data sets. 

6. CURRENT AND FUTURE WORK 
We are investigating other modeling techniques for AQSim’ s 
model generator.  Specifically, we are constrained to models that 
(i) require only one sweep of data, (ii) are good at finding outliers, 
(iii) can be easily parallelized, and (iv) can efficiently answer non-
range queries (see [3]) 

We are also interested in optimal disk layout of the index tree.  In 
particular, we are investigating techniques which will minimize 
seek time.  In addition, parallelizing AQSim’ s query processor is 
part of our future work.  Finally, we are conducting experiments 
on other larger data sets.  

7. CONCULSION 
To help scientists gather knowledge from their large-scale 
simulation data, we are developing the ad-hoc query 
infrastructure, AQSim.  Our system consists of two components: 
(i) the model generator and (ii) the query processor.  The model 
generator reduces the data storage requirements by creating and 
storing mathematical and statistical models of the data at multiple 
resolutions.  The query processor decreases the query access times 
by evaluating queries on the models of the data instead of on the 
original data set.  We describe two simple but effective statistical 
modeling techniques for simulation data.  Our mean modeler 
computes the unbiased mean of systematic partitions of the data.  
It makes no assumptions about the distribution of the data and 
uses a variant of the root mean square error to evaluate a model.  
Our goodness-of-fit modeler utilizes the Andersen-Darling 

goodness-of-fit method on systematic partitions of the data.  This 
modeler evaluates a model by how well it passes the normality 
test on the data.  Both of our statistical modelers generate models 
that effectively answer range queries.  At each resolution of the 
data, we calculate the precision of the query’ s answer by scaling 
the one-sided Chebyshev Inequalities with the original mesh’ s 
topology.  We combine different precisions by computing their 
weighted average.  Our empirical analyses on two scientific 
simulation data sets illustrate the value of using these statistical 
modeling techniques on large simulation data sets. 
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